Lockout Communications Protocol

Contents
1o o o 1 o o o

) o LR A 2 Lo [ To T I = | Tl =T V7= PP
RaAAIO Param el erS. . i
Radio Packel STrUCTUIE. ... e
[ ool Y] o) € Lo o F PP
e NV (o= S o U ot 1 = PN
(©0o] 001 0 011 T £ PP
(@0] 0 07 0T a2V Lo [ =1 Y=
Radio COmMMUNICAtIONS OVEIVIEW......iuiiiiiiie it e e e

Device to Server CommuUNICAtION......oiuuiiiii e

Server to Device CommUNICAtION. ...t
DTV el I Ao Lo [ =T =] o e [
Packet DedupliCation.... ...



Introduction

This document outlines the behavior of the all communications done in the lockout
system, which is comprised of the following:

e 915MHz radio communication (SPIRIT1)

¢ Network communication between the gateways and server (WebSocket)

e UART/Serial communication between the Raspberry Pi and microcontroller on
the gateway

Lockout devices and gateways each contain a SPIRIT1 radio transceiver IC
(Integrated Circuit). These radios communicate using the 915MHz ISM band.
Communication on the 915MHz network is done solely between a device and a
gateway.

Gateways contain a Raspberry Pi, a small computer running Linux. This device is
connected to one of Rowan’s WiFi networks, and communicates with the 915MHz
radio module through a separate microcontroller. Gateways communicate with the
server using WebSockets. The gateway Pi and microcontroller communicate over a
UART (serial) connection. The data sent over UART and WebSockets is very similar
to the payload of the radio packets, with an additional destination address field.

SPIRIT1 Radio Transceiver

This radio transceiver implements quite a lot of useful functionality right into the
hardware, of which the following is used:

- AES-128 encryption coprocessor

- Packet handling engine

- SPl interface

- RX FIFO buffer

- Automatic CRC handling

- CSMA (carrier-sense multiple access)
- Address-based packet filtering

The SPIRIT1 datasheet is a very useful resource, and should be referred to when
reading this document. Sections 7, 8, and 9 are the most relevant.

CSMA is an important feature: before transmitting, the SPIRIT1 will check if the
channel it is going to use is already busy. If so, it chooses a different channel and
repeats the process. This ensures that if packets are sent simultaneously, they do
not interfere. Also if there are other 915MHz transmitters in the area, it will choose
channels that do not interfere with those. This makes channel selection automatic,
though doing a manual check of the radio usage In the area should still be done.

The automatic packet filtering feature will ensure only packets with the destination
address equal to the device’s own address are received.


https://www.st.com/content/ccc/resource/technical/document/datasheet/68/6c/7b/ec/b2/6b/49/16/DM00047607.pdf/files/DM00047607.pdf/jcr:content/translations/en.DM00047607.pdf

Radio Parameters
These describe the fundamental nature of the communication technology itself, and
can be changed in software.

Parameter Value
Base Frequency 915MHz
Channel Space 100kHz
Modulation FSK
Data Rate 38.4kbps
Frequency Division 20kHz
Bandwidth 100kHz
Power Index 7

Power DBM 11.6
RSSI Threshold -120
CSMA RSSI Threshold -90

Radio Packet Structure

Each packet sent between radios uses the following packet structure. Each packet is
30 bytes long. The SPIRIT1’s basic packet handling engine is used, which
implements this packet structure automatically. The packet handler allow for
variable length payloads, but the lockout system uses the same length (30 bytes)
for all communication, to reduce software complexity.

Field Length Description

Preamble 4 bytes ‘10101010’ sequence

Sync 4 bytes

Length 1 byte Length of packet

Address 1 byte Destination address

Payload 19 bytes Actual data to be sent

CRC 1 byte For checking packet integrity
Encryption

The radio packets are encrypted using the AES-128 encryption standard. The
computation is done by the SPIRIT1 radio modules in batches of 16 bytes at a time.
Since the full packet is greater than 16 bytes, the first 16 bytes, and the remaining
bytes are encrypted separately.

The 16 byte encryption key is used across all of the devices and gateways, and
stored in the program memory of the STM32 microcontrollers. In the source code,
the key is stored in the header file aes_key.h. This header file is not present in the
version controlled source code on Gitlab.

Radio Payload Structure

Field Length | Index Description

Command 1 byte [0]

Source Address | 1 byte [1] Address of sender




Tag 1 byte [2] Increments every packet transmitted, for
deduplication
Retry 1 byte [3] Increments when packet is sent as a retry
Data 16bytes | [4:19] Argument of command
Websocket/UART Packet Structure
Field Length | Index | Description
Start Byte 1 byte Only for UART
Command 1 byte [0]
Source Address | 1 byte [1] Address of sender
Destination 1 byte [2] Address of receiver
Address
Tag 1 byte [3] Increments every packet transmitted, for
deduplication
Retry 1 byte [4] Increments when packet is sent as a retry
RSSI 1 byte [5] RSSI of gateway received packets
Data 16bytes | [6:21] Card ID, device unique ID, etc.
End Byte 1 byte Only for UART
Commands
Name Byte Directionali | Description Data Field
ty
ACK Oxff bidirectional | Acknowledge last Command, tag and
received command RSSI of last received
packet
Ping 0x01 bidirectional | Get an ACK response Empty
from from destination
Request | 0x02 Device -> Device requests a new | 12-byte unique ID of
Address server address device
Provide 0x03 Server -> Server provides a new | 12-byte unique ID of
Address device address to a device device, new address
Access 0x10 Device -> Access to a machine is | 16-byte card ID
Request server requested after ID number
insert
Access Ox11 Server -> Server responds to Denied: 0x00
Respons device Access Request Accepted: 0x01
e Errors: 0x02+
Machine | O0x12 Server -> Change machine state | Disable: 0x00
Control device from server Enable: 0x01
Machine | O0x13 Device -> Device updates server | Disabled: 0x00
State server on whether a machine | Keyswitch Enabled:
is enabled or disabled 0x01
User 0x14 Device -> Notify server that Help: 0x00
Button server someone pressed the Report: 0x01
help, broken, or report | Broken: 0x02




buttons
Set 0x15 Server -> Change whether force | Off: 0x00
Force device disable mode is on On: 0x01
Disable
Status

Common Addresses

Name Byte
Unassigned Oxff

address

Generic Gateway | 0x01

Radio Communications Overview

Device to Server Communication

A packet sent from a device to the server will use the generic gateway address as
the destination address, and the device's address as the source address. All
gateways that receive the packet will relay it to the server. Gateways are
configured to filter packets based on the generic gateway address. The gateway
microcontroller sends the packet payload along with signal strength information
(not yet implemented) to the gateway Pi over UART. The gateway Pi also adds the
message payload to a log file. The Pi sends the message over the network
(WebSocket) to the server and adds the packet to a temporal cache (not yet
implemented). There may be multiple gateways that receive the same packet, in
this case each gateway relays the message to the server.

Server to Device Communication

A packet sent from the server uses device's address that the message should be
sent to as the destination address, and the generic gateway address as the source
address. The server sends the response to all gateways, over multiple individual
WebSocket connections. Each gateway logs the message and sends it to the
gateway microcontroller over UART, which transmits the packet over the 915MHz
network. Each device within range will receive the response, but those whose
address does not match will discard the message due to the SPIRIT1 packet filtering
functionality.

Acknowledgement

Once a device or the server sends a packet, it expects an ACK to be sent for
confirmation. This is necessary even if a response is expected anyway (such as
Access Request). The only exception is Request Address, where no ACK is provided
aside from the Provide Address.

The data field of the ACK packet contains the command, tag and RSSI of the
received packet. The recipient of the ACK verifies that the command and tag match
the packet it originally sent.



Retries

When a device of the server does not receive an ACK after a certain amount of time
after sending a packet, it will send the original packet again. The retry field of the
packet is normally 0, but is incremented every time a retry is sent.

Device Addressing

When a device is turned on, it transmits the Request Address command every 3
seconds, which includes the microcontroller's unique 96-bit ID in the data field.

When the server receives a Request Address command, it creates a new address
and correlates it with the 96-bit ID in a database table. The server sends a Provide
Address command, still using the Generic Unassigned address as the destination
address, and including the new address and the 96-bit ID in the data field of the
payload. The 96-bit ID is contained in the first 12 bytes of the payload, and the 13*"
byte is the new address. Any device with the Generic Unassigned address will
receive this message. Devices will check to ensure the 96-bit ID matches their own.
If the IDs match, the device writes the new address to EEPROM and exits pairing
mode.

If a Request Address command is received by the server containing a 96-bit ID that
is already in the database, the server responds with the address that it has already
assigned.

Once a device is given an address, it is up to the user to enter the description fields
of what this device is into the server.

The user interface of the server allows users to generate a new address for devices
that have already been registered.

Packet Deduplication

When the server receives a packet, it will check to see if the tag and source address
exactly match the packet that was sent last. If they match, it is assumed it is a
duplicate and it will be ignored. This same processes is done when a device receives
a packet, but only the tag is checked, since the source address will always be the
same (generic gateway address).

Access Response Error Codes

Code Error Message

0x02 Machine not set up in server

0x03 ID number does not exist in server




	Introduction
	SPIRIT1 Radio Transceiver
	Radio Parameters
	Radio Packet Structure
	Encryption
	Radio Payload Structure
	Websocket/UART Packet Structure
	Commands
	Common Addresses
	Radio Communications Overview
	Device to Server Communication
	Server to Device Communication
	Acknowledgement
	Retries

	Device Addressing
	Packet Deduplication
	Access Response Error Codes

